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Abstract

Significant number of people with dementia are at risk of wandering and getting lost. These
individuals may get hurt, cause distress to families and caregivers, and require costly search
parties. This study explores the possibility of using machine learning methods applied to data
from GPS trackers to create individualized models that describe patterns of movement. These
patterns can be used to predict typical locations of individuals with dementia, and to detect
movements that do not follow these patterns and may correspond to wandering. Data from a
sample of 338 GPS trackers were used. After pre-processing the data are used for two-stage
clustering, followed by classification learning. The number of clusters ranged between one
(devices that always stayed “home”) and seven for devices with maximum mobility. The average
number of clusters was 2.33. Models for predicting location achieved varying accuracy,
depending on regularity of wearer’s schedule. The mean accuracy of 76% was achieved in
predicting exact location of a device. Unusual locations that potentially correspond to wandering
incidents can be identified as outliers from normal movement patterns.
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1. Introduction

Alzheimer’s Disease (AD) and other forms of dementia constitute important public health
concern. There are currently about 5.4 million individuals with dementia in the United States
(Alzheimer’s Association, 2017a), with 70-80% of all people with dementia in the US being cared
for at home by a family member (Mayo Clinic, 2017) and 15 million caregivers provided annually
an estimated 18.2 billion hours of care. In Virginia alone, there were approximately 447,000
family caregivers in 2013 and an estimated 455,000 in 2015 (Alzheimer’s Association, 2017b). It
is estimated that 60% of people with dementia will wander (Alzheimer’s Association, 2017c).
Wandering is a broad term that can be defined as “a syndrome of dementia-related locomotion
behavior having a frequent, repetitive, temporally-disordered and/or spatially-disoriented
nature that is manifested in lapping, random and/or pacing patterns, some of which are
associated with eloping, eloping attempts or getting lost unless accompanied,” (Algase et al.,
2007). The wandering may be a result of a person with a dementia type such as Alzheimer’s not
being able to remember his or her name or address, and becoming disoriented even in familiar
places. In the presented research we focus on a specific aspect of wandering, that is being lost
outside of home. Wandering can occur during the mild, moderate or severe stages of AD and is
potentially dangerous (leading to falls and fractures, institutionalization and death) and may
cause significant stress for families and caregivers (Alzheimer’s Association, 2017c; Rowe &
Bennett, 2003). Characteristics and behaviors associated with wandering include having
dementia for a longer duration, severity of dementia (though wandering can occur at any stage),
presence of a sleep disorder, impairment in day-to-day functioning, and behavioral disturbances
such as anxiety and depression (Ali et al.,, 2016). Recent research on the management of
wandering behavior focuses on promoting safe walking which often includes electronic tagging
of a person who wanders. GPS tracking of people with AD is often seen as unethical because it
decreases a person’s autonomy and the individual’s right to privacy (Ali, et al., 2016; Yang and
Kells, 2017), yet there are no alternatives except of constant supervision.

Ubiquitous presence of health trackers, GPS devices, smartwatches and other wearable
technologies open new possibilities for improving safety and care for individuals with AD. The
purpose, function and technology offered by these devices vary, and ranges from gait and
movement analysis to assess physical activity, to alert systems that detect falls, to GPS trackers
that help locate the missing. There are multiple trackers available on the market now, some of
which are advertised specifically for the elderly or individuals with AD, including MX-LOCare,
Mindme, Pocketfinder, GPS Shoe and its successor GPS SmartSole, to mention just few. The latter
technology is used in this research as it provides real time monitoring of wearers. There are also
other technologies such as one used by Project Lifesaver that uses radio location to help find the
missing individuals (projectlifesaver.org). There are a number of previous research projects
related to the approach presented here. The closest available research is by Shoval et al. (2008,
2011) in which the authors identified differences in movement patterns between people with
mild dementia, MCI (Mild Cognitive Impairment) and no cognitive impairment. They found out
that participants who suffer from mild dementia have much less varied mobility patterns than
healthy participants and those with MCI and they usually stay close to their homes. They go out



at routine times, although it varies from person to person: some stay in the familiar surroundings
while others move farther. However, in their approach, the authors did not consider prediction
and detection of wandering patterns. According to a video-based observational study conducted
by Saltzman et al., (1991) patients follow four basic travel patterns: direct trajectory, pacing,
random trajectory and lapping. The latter 3 patterns are categorized as wandering. Vuong et al.
(2011) used this rule to implement a classification algorithm for detecting these trajectories. In
another experiment, the same team defined a feature vector for each trajectory including
displacement, path length, total travel time, average velocity, straightness index, directional
mean, and circular variance, and used existing supervised learning algorithms to classify
trajectories into the 4 categories. They achieved the best accuracy of 72% using a Random Forest
classifier. In another related research, Delaunay et al. (2017) detected wandering behaviors from
movement patterns using GPS data collected by GPS watch trackers. Their algorithm uses the
metrics coming from the GPS and sends an alert only when all the wandering behavior patterns
are detected. Lin et al. (2012) proposed a real-time method to detect wandering behavior by
finding adjacent turning points (points in a trace with a vector angle equal to or more than 90
degrees) within a distance range which form loop-like movements. Sposaro et al. (2010) built an
android application to detect wandering patterns which uses two-phase approach proposed by
Yin et al. (2007) in which a one-class Support Vector Machine (SVM) model filters out normal
data, then the abnormal activities are detected from a normal activity model using kernel
nonlinear regression (KNLR). The data collected is then evaluated by Bayesian networks which
determine the probability of wandering behavior. Kearns et al. (2011) found a link between
dementia diagnosis and path tortuosity (change of movement path) recorded in an indoor
assisted living facility using Fractal Dimension (Fractal D) approach. Tung et al. (2014) used GPS
data to measure life space of individuals with AD. There are many other examples of applications
of machine learning methods to GPS data and prediction of location is relatively well established
(i.e., Ashbrook & Starner, 2003; Zheng et al., 2008, 2010; Hightower, 2008; Feher & Forstner,
2011; Lin and Hsu, 2014).

The approach presented here has many similarities to research previously done by others, but is
distinct in many ways. Our main objective was to create models capable of predicting person’s
location. This is achieved by a multi-stage process that involves unsupervised and supervised
learning.

The remainder of this report has two main components, description of data and methods
(Section 2) and analysis of obtained results (Section 3), followed by conclusion and research
directions in GPS tracker data analysis.

2. Method

Machine learning techniques are used to identify frequency of wandering and detect
spatiotemporal patterns that may allow for prediction of future incidents. Machine Learning (ML)
is an interdisciplinary field that intersects artificial intelligence, statistics, cognitive science,
computer science, and other disciplines. The general principle behind ML is that for very complex
problems it is not possible to program computers to perform given tasks, instead computers learn



how to perform them. There is a wide range of applications areas that would not have been
possible without ML methods, from self-driving cars, to automated image recognition and online
shopping recommendations, to prediction of functional decline of the elderly (Wojtusiak et al.,
2016). Although behind other disciplines, these methods are gaining popularity in medicine and
health applications. There is often a confusion of why ML methods should be used rather than
traditional statistics, including regression modeling. In short, ML methods allow for automated
prediction of the unknown thus providing wide selection of techniques, while inferential statistics
and traditional statistical modeling are about detecting regularities and trends in data, as well as
studying asymptotic properties of created models.

In the reported research two types of ML methods are used. Unsupervised learning algorithms
are used to find patterns in the data, that correspond to frequent locations in which GPS tracking
devices are typically located. Supervised learning methods are used to construct models for
predicting likely locations as well as unusual places. Because the data analyzed here did not
include any information about the device users and dementia, in the presented work we cannot
claim any relationship between obtained results and confirmed incidents of wandering, thus we
assume that any non-typical movement is potentially related to wandering.

GPS SmartSole: SmartSoles by GTX Corp. are tracking devices that include GPS and GSM (cell
phone) units embedded in shoe insoles to provide real-time geolocation data for wearers. The
company also offers monitoring service, and notification of events in which wearers cross pre-
defined geozones. The SmartSoles (Figure 1) fit many types of shoes and can be adjusted to
wearers providing additional comfort (gpssmartsole.com). Because these devices are “hidden”
inside shoes, they reduce chances of being discarded by individuals suffering from dementia
known to remove foreign objects. The data used in this project has been obtained from GTX Corp.
as part of data use agreement between the company and our research group. The team also
received help and expertise in understanding the data and its limitations.

Figure 1: SmartSole design (source: gpssmartsole.com)



Spatiotemporal GPS Data: The obtained data consist of flat data tables that include the following
fields: device ID, GPS timestamp, server timestamp, longitude, latitude, and device status. From
the obtained data, a sample of 338 devices with at least 14 days of data was selected. ML
methods were applied individually for each device, independent of other devices, thus creating
individualized models. In the experiments, at least 7 days of data were used to test models and
the reminder of data for training. The rationale for using time-based split is that models are
intended to predict user behaviors in the future, and this is not guaranteed with random split
between training and testing. This is illustrated in Figure 2. Summary of data is shown in table 1
and Figure 3.

Model Training Model Testing

Device Initialization

GTX Corp. Location time

Figure 2: Device data timeline.

Table 1 shows distribution of status codes for the devices and figure 3 shows the percentage of
time spent in and outside during daytime and nighttime.

Sample size : 338 Mean SD 40
Device status Inside day
- . . & Inside night
Percentage of time in motion 9% 11% Outside day
Percentage of time not moving 86% 15% ii Outside night
Other device status E 301
Percentage of time arrived at geozone 1% 7% E
Percentage of time departed geozone 0.6% 2% 1
Percentage of time battery is low 3% 9% g
Percentage of time spent at home 55% 30% g? 20 1
Number of data points 5667.56 7542.08
Number of days 99.63 125.21
Grand Mean  Grand SD 10
Mean distance of device from home 31.24 km 198.56 km Man Tues Wed Thurs Fri Sat Sun
Figure 3: Percentage of time spent in and
Table 1: Device status statistics. outside during the daytime and nighttime.

Data Analysis: The approach described below has been created to handle spatiotemporal nature
of GPS data, detect patterns of typical movement, and unusual locations. To create patterns of
movement for individuals with AD, raw GPS data needs to be normalized and transformed before
machine learning algorithms can be applied (steps 1-4 below). Frequent locations are discovered
by applying clustering algorithms (steps 5-7), followed by classification learning needed to predict
frequent locations (step 9), and labeling the noise as routes between clusters and subsequently
binarizing the labeling of data into typical and suspected wandering incidents (steps 10, 11).
Finally, the unusual locations can be confirmed by secondary classification (step 12).

The steps are illustrated below with parts of Python 3 code used to implement the method.
Machine learning library ScienceKit-Learn (sklearn) and data analysis library Pandas were also
used.



Select device and data:

- Remove data for devices that: (a) were never activated outside of manufacturer’s facility;
(b) have less than 14 days of data. The minimum of 14 weeks of data is required later in
the prediction step, 7 days for training and 7 days for testing.

- Remove erogenous data points: (c) dataset data that correspond to the manufacturer
location (initiation of each device and in some cases towards the end). These are
typically first and last few minutes of the device’s recorded activity. For SmartSole
devices these are at the company location in Los Angeles, CA. (d) remove incorrect data,
such as (0,0) coordinates, and those with dates in the past.

The resulting project data is referred to as D.

Calculate home location for each device as the most frequent 100x100 feet rectangle present in
the data D.

Normalize and transform data Dyorm, so that the home location is in (0,0) coordinates, and other
locations are randomly rotated. While not strictly needed for the following steps, this
normalization and transformation ensures privacy and removes possible real location
identification in the data.

Convert timestamped geolocation data to weighted frequency domain in which weight of each
data point is assigned as
livi — b . di _
we) ={ ¢ if dist(x;, Xi11) <=1 A 5(Xi41)
1 otherwise
where t; and t;4is time measured at points x;, x;,1. In the data, by default the time is measured

in seconds. We considered a constant c to be 600 seconds (10 minutes), that correspond to
typical data frequency in GPS trackers used. A data point is weighed if its distance to the next
point is not more than \. Here, we used A = 0.05km after conducting experiments with different
possible values. This approach weights only data when the device is stationary. s(x;,1) indicates
status of the device being initialized or switched off, thus preventing very high weights assigned
to periods in which the device was off. The data do not indicate on/off status of devices;
therefore, after experimental testing we decided that if the next point is more than t=3900
seconds far, the device is considered off and the point is not weighed.

Apply weighted DBSCAN clustering algorithm with minimum support of MinPts = p * ), w(x;)
to identify top clusters C, ... Cx with very high frequency in the data DY/y;,,- p is @ parameter.
After optimization, the values p = 0.1, 0.25, 0.3 were used in final experiments. Also, applying the
same approach, the values € = 0.2km, 0.3km were used as the maximum distance between two
points in order to be considered as neighbors. Training of DBSCAN in Python code is shown
below.

epsilon = ¢

min_sample = int(df['w'].sum() * p)

dbscan_1 = DBSCAN(eps = epsilon / kms_per_degree, min_samples = min_sample, algorithm =
'ball_tree', metric = 'haversine') .fit(df[['x','y']], sample_weight = df{'w'])

labels_ = dbscan_1.labels_

unique_labels_ = set(labels_)

n_clusters_1 = len(set(labels_)) - (1 if -1 in labels_ else 0)

df = pd.DataFrame()
dff'id'] = deviceid




df['t'] = T[:,0] # timestamps
df['x'] = X[:,0] # latitudes
dff'y'] = X[:,1] # longitudes
df['w'] =Y # weights

df['l'] = labels_ # labels

# Find home (label with the most sum of weights) & label it the max label, in order to distinguish it
later
df_no_nois = df[df['l'] I=-1]
if not df_no_nois.empty:
m = df_no_nois[['W','I'l].groupby(['l']).sum().max()
df_2 =df_no_nois[['W','I'l].groupby(['l']).sum() ==
lab = df_2[df 2['w']].index.values[0]

new_max = max(labels_) + 1
df.ix[df['l'] == lab, 'l'] = new_max

# Relabel points starting from 0, in order to fill in empty space of former label of home
j=0
dic={}
for i in sorted(set(df[df['l'] !=-1]["l"])):
dic[i] =j
j+=1

# Reassign new negative labels to clusters, because we will have same labels again in the second

dbscan
# Later, once we have labels of the second dbscan we will reassign the positive numbers to these

labels

labels =[]
foriin df['l']:
ifi 1=-1:
label = -dic[i]-2
labels.append(label)
else:

labels.append(i)

df['l'] = labels

Remove from Dy, all points belonging to clusters Cy, .. Ci. thatis Dy,rm= DNorm — U C;

dff = df[df['label']==-1]

Apply the second round weighted DBSCAN clustering algorithm to points from Dy, with
ax*Yy;w(x;) wherex; € Dy, ..if a*X;w(x;) >

B otherwise
to obtain clusters Ci:s, ... Ck. @ and 3 are parameters. Using the pareto optimization technique,
we chose values 0.01, 0.02, 0.03, 0.05 for «. In the initial experiments [ is considered to be 30.

minimum support of MinPts = {




min_sample = int(dff['w'].sum() * a)
if min_sample > 3:
dbscan_2 = DBSCAN(eps = epsilon / kms_per_degree, min_samples = min_sample, algorithm =
'ball_tree', metric = 'haversine').fit(dff[['x",'y']], sample_weight = dff['w'])
else:
dbscan_2 = DBSCAN(eps = epsilon / kms_per_degree, min_samples = (3, algorithm = 'ball_tree',
metric = 'haversine').fit(dff[['x','y']], sample_weight = dff['w'])

labels = dbscan_2.labels_
unique_labels = set(labels)
n_clusters_2 = len(set(labels)) - (1 if -1 in labels else 0)

df.ix[df['l']==-1, 'l'] = list(labels)
# Convert negative weights to positive

df.ix[df['11<=-2, 'I'] = - df['I'] + max(list(db2.labels_)) - 1

n_clusters_ = n_clusters_1 + n_clusters_2

Output clusters Cy, ... Cx labeled as the most frequent locations.

df_clusters = pd.DataFrame()
df_clusters = df[df['l'] I=-1][["id",'x","y","I']]

Construct models for predicting typical locations belonging to clusters Cj, ... Ckgiven day and
time.

— Remove the points between locations which are marked as noise in the clustering step,
also remove the data related to the most frequent location (home) since it comprises
most of the points and would make the prediction biased.

— Order data by timestamp, and use 7 last days of data or 25% of it towards the end
whichever includes more days for testing and apply several classification methods.

— Calculate the accuracy and AUC. We chose Random Forest (Liaw, 2002) in our initial
experiments because of the higher accuracy.

sql = "select tmp.deviceid, latitude, longitude, timestamp, day, hour, weight, label, \"# of days\" from
(select deviceid, (max(timestamp)- min(timestamp))/(3600*24) as \"# of days\" from data_30 group
by deviceid)tmp, data_30 where tmp.deviceid = data_30.deviceid and \"# of days\" >= 14;"
dff = pd.read_sql(sql, conn)
devices = dff['deviceid'].unique()
for device in devices:
# Find home label
m = dff[(dff['deviceid'] == device) & (dff['label'] != 1)][['weight','label']]
.groupby(['label']).sum().max()
df_2 = dff[(dff['deviceid'] == device) & (dff['label'] |=-1)][['weight','label']]
.groupby(['label']).sum() == m
lab = df_2[df 2['weight']].index.values[0]




# Remove noise and home

df = dff[(dff['deviceid'] == device) & (dff['label'] !=-1) & (dff['label'] !=lab)]
# Order data by timestamp

df = df.sort_values('timestamp')

sz = df['day'].size

tr = df[:int(sz*0.75)]

ts = dffint(sz*0.75):]

min = ts['timestamp'].min()
max = ts['timestamp'].max()
if (max - min)+1 < 604800 : # a week
cf = max — 604800
# training set
tr = df[df['timestamp'] < cf]
# test set
ts = df[df['timestamp'] >= cf]
# Apply classification algorithm
rf = RandomForestClassifier(n_estimators = 100)
rf fit(tr[cols], tr['label'])
pred_rf = rf.predict(ts[cols])
probs_rf = rf.predict_proba(ts[cols])

result = pd.DataFrame()

result['class'] = pred_rf

result['probs'] = list(probs_rf)

result['true'] = ts['label']

# Calculate accuracy

accuracy.append(float(result[result['true']==result['class']]['class'].count())/float(result['class'].
count()))

# Calculate AUC
probs=result['probs']
j=0
for i in np.sort(trl.label.unique()):
j+=1
fpr, tpr, threshold = roc_curve(result['true'],probs[j],pos_label=i)
if(np.isnan(fpr).any()): # if we don't have any Negative
auc_list.append(1)
else:
if(np.isnan(tpr).any()): # if we don't have any Positive
auc_list.append(0)
else:
auc_list.append(auc(fpr, tpr))

mean_auc = np.mean(auc_list)
auc.append(mean_auc)

10.

Label the noise acquired in step 7; the routes are all labeled as Rex-gy-




for device in devices:

# Order data by timestamp

cursor.execute("SELECT deviceid, timestamp, latitude, longitude, weight, cast(label as text) FROM
labels where deviceid="' + ".join(device)+"' order by timestamp")

X = cursor.fetchall()

X = np.asarray(X)

index =0
start=0
# If data starts with noise, pass it until you reach a cluster
while X[index,5] =="-1":
index = index + 1

start = index
while index < len(X[:,5]) - 1:
# Pass the start cluster
while index < len(X[:,5]) - 1 and X[index,5] == X[start,5]:
index = index +1

start =index - 1

noise = index

# Pass the noise between 2 clusters if any

while index < len(X[:,5]) - 1 and X[index,5] =="-1":
index = index + 1

# Save cluster
cluster = index
if noise !=index : # we had noise between clusters;
end = index
# Pass the end cluster
while index < len(X[:,5]) - 1 and X[index,5] == X[end,5]:
index = index + 1

# Label noises between start and end clusters
foriin range(start + 1, end):
X[i,5] = 'R" + str(X[start,5]) + ',' + str(X[end,5])

start = index - 1

else: # we didn't have noise between clusters, we go to the next iteration;
start = cluster
index = cluster

fori, j, k, I, m, nin zip(X[:,0],X[:,1],X[:,2],X[:,3],X[:,4] X[:,5]):
cursor.execute("insert into \"labels_routes\"(deviceid, timestamp, latitude, longitude, weight,
label) values (%s, %s, %s, %s, %s, %s);",(i, j, k, I, m, n))

11.

Label data that do not belong to clusters or regular routes between clusters as potential
wandering incidents (anomaly detection), m1, my, ... mp, and link that data to reported wandering
incidents.




# Binarize labels for the next step’s second classification
cursor.execute("select deviceid, timestamp, latitude, longitude, weight, label, label as label_2 from
\"labels_routes\";")
X = cursor.fetchall()
df = pd.DataFrame(X)
arr = df.values
for elem in arr:
if elem[5].find('R") I=-1:
# RCX_CX
if elem[5][elem[5].index('R') + 1: elem[5].index(’,')] == elem[5][elem[5].index(',') + 1 : ]:
elem[6] =1
# RCxiCy
else:
elem[6] =0
# cluster
else:
elem[6] =0

12.

Perform secondary classification to check for existence in patterns in unusual locations. This is
done as binary classification in which points mi, my, ... m, are classified against those from
clusters Cj, ... Cx and routes between them. Note that in this step, we expect AUC close to 0.5
that corresponds to unpredictable movements.

sgl= "SELECT tmp.deviceid, latitude, longitude, timestamp, day, hour, weight, \"label_2\" as label, \"#
of days\" from \"labels_routes_binary\",(select deviceid, (max(timestamp)-
min(timestamp))/(3600*24) as \"# of days\" from \"labels_routes_binary\" group by deviceid)tmp
where tmp.deviceid= \"labels_routes_binary\".deviceid and \"# of days\" >= 14;"
dff=pd.read_sql(sql, conn)
devices=dff['deviceid'].unique()
for device in devices:
deviceids.append(device)
df= dff[(dff['deviceid']==device)]
# Order data by timestamp
df = df.sort_values('timestamp')
sz = df['day'].size
tr = df[:int(sz*0.75)]
ts = df[int(sz*0.75):]
min = ts['timestamp'].min()
max = ts['timestamp'].max()
if (max - min)+1 < 604800 : # a week
cf = max — 604800
# training set
tr = df[df['timestamp'] < cf]
# test set
ts = df[df['timestamp'] >= cf]




# Apply classification algorithm
if (len(tr) != 0) and (len(ts) != 0): # if training and test sets are not empty
rf = RandomForestClassifier(n_estimators = 100)
rf fit(tr[cols], tr['label'])
pred_rf = rf.predict(ts[cols])
probs_rf = rf.predict_proba(ts[cols])

result = pd.DataFrame()

result[cols] = ts[cols]

result['class'] = pred_rf

result['probs'] = list(probs_rf[:,0])

result['probs_1'1=1

result['probs_1'] = result['probs_1'].values - result['probs'].values
result['true'] = ts['label']

# Calculate accuracy
Acc.append(float(result[result['true'l==result['class']]['class'].count())/float(result['class'].count()))

# Calculate AUC
fpr, tpr, threshold = roc_curve(result['true'], result['probs_1'1)
AUC.append(auc(fpr, tpr))

else: # if training and test sets are empty, go to the next iteration for the next device
Acc.append(math.nan)
AUC.append(math.nan)

Step 5 is needed because of large disproportion of weights between the most common (home)
location and other locations, which also varies between devices. Without the step, it is practically
impossible to select MinPts (parameter that defines minimum cluster size) that result in
reasonable clustering. The above method relies on DBSCAN (Density-Based Spatial Clustering of
Applications with Noise), which is a popular and very powerful clustering algorithm, particularly
applicable to geospatial data (Sander et al., 1998).

In step 5-7, we have experimented with other clustering methods, including OPTICS (Ankerst et
al., 1999), k-means, and hierarchical clustering, but decided on using BDSCAN because of its
superior accuracy.

After spatiotemporal clustering, the data are ready for location prediction (step 9) in which ML is
applied to create classification models for predicting normal location (given as a cluster/normal
location Ci..Ck) given day and time. In our initial experiments, we have applied several methods
from which Random Forest (Liaw, 2002) shows the best results. Random Forest models allow for
automatically detecting geo-zones and can be used to raise alarms when the individual is not
present at an expected location. In the future, we plan to collect sufficient longitudinal data to
test the applicability of temporal deep learning techniques (i.e., Zhang et al., 2017), which are
recently gaining popularity.

In steps 10-12, anomaly detection is applied to identify suspected wandering incidents, and then
confirming them by linking them to survey data. In the future, we will be able to label specific
parts of data as those in which individuals were lost. To do so, the data Dy, are filtered to



remove all points belonging to normal locations Ci..Ck as well as points in between (i.e., driving
or walking between C;..Ck). The resulting dataset Danom represents anomalies in the data, some
of which may be indicative of wandering events will be matched against reported wandering. We
believe that Gaussian Mixture Models (i.e., Mclachlan & Peel, 2004), can be then applied to
identify patterns of areas in which individuals with AD go missing. These models will be
constructed from combination of GPS, survey, and landmark data. The quality of patterns will be
measured using standard methods available in ML. Cross-validated Area under ROC Curve (AUC;
C-statistic), precision and recall will be reported. In the initial set of experiments, we have
explored large number of possible algorithm parameters, arriving at a number of satisfactory
solutions that provide a compromise between precision accuracy and number of clusters.

Parameter Tuning: In order to choose the best possible parameters needed for our algorithms,
we executed them with different combination of parameters needed in step 4 for calculating
weights and in steps 5 and 7 for clustering.

To obtain threshold value for time gaps up to which the device could be assumed continuously
on, indicted as s(x;;1) in step 4, we analyzed frequencies of temporal distance between
consecutive points reported by GPS trackers. These data are illustrated in histograms (Figure 4)
that show averages for all devices as well as two randomly selected ones. The analysis indicated
that 3900 seconds is an optimal value to be used as a threshold. Note that the work can be
extended by adaptively selecting a device specific threshold, that would account for difference
in usage patterns between different users.
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Figure 4: Frequencies of time gaps less than 5 hours for all the devices (left) one randomly
selected device with approximately 5,000 data points (middle); and one device with
approximately 40,000 data points (right).

In order to select the optimal parameters used by clustering algorithms, we performed
optimization that searched over large number of combinations of possible values as follows:

'A': maximum distance between two data points in order to be considered in the same region.
The potential values are [0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9].

'e': maximum distance between two points in order to be considered as neighbors in the DBSCAN
clustering algorithm with possible values of [0.05, 0.1, 0.2, 0.3, 0.5, 0.7, 0.9].

'p": minimum support for the first DBSCAN with potential values of [0.1, 0.15, 0.2, 0.25, 0.3].



'a': minimum support for the second DBSCAN with possible values of [0.01, 0.02, 0.03, 0.05, 0.08,
0.1].

First, experimented with values of [0.3, 0.5, 0.7, 0.9], [0.1, 0.15, 0.2, 0.25] and [0.01, 0.05, 0.08,
0.1] for €, p and a. Smaller values of € and a resulted in higher accuracy whereas in the first
DBSCAN, minimum sample support (p) with the bigger values had better results. Therefore, we
chose [0.05, 0.1, 0.2], [0.2, 0.25, 0.3] and [0.01, 0.02, 0.03] for the second set of experiments.
After running the clustering step with the above values and building our predictive model in the
next step, we ran the pareto frontier optimization algorithm and arrived at a number of
satisfactory solutions that provide a compromise between AUC and number of clusters (that
allows for more precise location detection). The pareto optimal solutions chosen can be seen in
Figure 5.
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Figure 5: Average number of locations vs. average AUC (left) and accuracy (right). Pareto
solutions are marked in red. The solutions circled are our selected choices.

In the final set of experiments, we checked feasibility of tracking change of movement patterns,
as identified by clusters over time. To do so, data were split into monthly periods and clusters
generated within each month. The clusters were compared using Hotelling’s_T-Squared test to
indicate significant changes in movement.

3. Results

The method described in the previous section has been applied to a sample data obtained from
GTX Corp. In this section, the obtained results are reported as follows. First, results of clustering
are presented, followed by prediction of usual movement. Then, selected results that indicate
possibility of detecting change of patterns over time are described. Finally, results of classification
of unusual locations is shown.

Clustering: A typical data of location with marked (in color) frequently visited regions is presented
in the Figure 6 below. Note that the location coordinates are recalculated so that home location
is at (0,0) coordinates. The plots on the left represent clusters obtained in step 5 of the above
method and plots on the right represent complete set of clusters (step 5 & step7). Table 2 shows



overall statistics of the clusters constructed with parameters of A=0.05, £€=0.2, p=0.3 and 0=0.02

(one of selected Pareto solutions).
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Figure 6: Frequently visited locations for a SmartSole device.
Left: clusters created in step 5; Right: complete set of clusters



Number of clusters
Number of clusters excluding home

Mean number of days spent in clusters

Mean number of data points in clusters

Mean number of days spent in clusters excluding home

Mean number of data points in clusters excluding home

Mean SD

2.94 2.20
1.94 2.20
Grand Mean Grand SD
43.20 55.58
6.48 19.59
2114.89 3411.80
217.77 316.14

Table 2: Cluster statistics based on 338 devices.

Prediction of Usual Movement: Next step after clustering is to apply supervised learning to
construct models for predicting typical locations. According to initial results, the performance of
the method depends on specific individual being followed. In the first approach, for some
individuals, based just on day of week and time the method is able to correctly predict 100% of
outside home locations, indicating a very regular lifestyle. For others, the accuracy can be as low
as 0%. The four Pareto-chosen parameter sets (Figure 5) lead to average AUC of 76%, 72%, 70%
and 67% (Figure 7). Further investigation why some devices have AUC of 0, indicates that one of
the limitations of the project is availability of enough data: as it can be seen in figure 8, the
clusters related to the testing data for one device (recorded in June) are completely different
from the clusters in the training data (April & May). Table 3 reports average accuracies and

statistics for prediction of locations.
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Figure 7: AUC & # of frequent locations of each device for the chosen pareto-optimal solutions.
A=0.05 £€=0.3, p=0.25 a=0.05; mean AUC =76% (left top); A =0.05, €=0.2, p =
0.3, a =0.02; mean AUC = 70% (right top)
A=0.05 €=0.2, p=0.25, a =0.03; mean AUC = 72% (left bottom); A = 0.05, € =0.3, p =

0.1, a =0.01; mean AUC = 67% (right bottom)



AUC (% of devices) AUC <=0.60 (43%) | 0.60<AUC<=0.75(11%) | AUC>0.75(46%) | Total
Mean SD Mean SD Mean SD Mean 5D
Accuracy 0.43 0.33 0.57 0.26 0.95 0.12 0.68 0.35
Number of clusters 5.17 2.16 5.86 1.88 2.64 1.43 2.94 2.2
Number of days 138.63 121.61 158.81 137.09 70.58 61.21 99.63 125.21
Number of data points 7666.1 9031.48 13928.33 10929.61 5002.6 6628.94 5667.56 7542.08

Table 3: Prediction of usual movements statistics.

Change of movement patterns: Comparison of clusters over time indicate that movement
patterns are stable for majority of devices. Hotelling’s_T-Squared test was used to compare data
in clusters over time. The obtained p-values were high (>0.1) which indicates that clusters
representing movement patterns are consistent over time (Figure 9). However, as indicated
earlier and depicted in Figure 8, a small portion of devices record data with radically different
pattern of movement over time. Further work and additional data are needed to evaluate
reasons for that irregularities.
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Figure 8: Monthly clusters of a device with 3 months of data.
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Figure 9: Clusters over time for three devices with the highest # of data points and longest
recorded usage.



Detection of Unusual Movements: Finally, the data allows for detection of patterns in unusual
activities, including wandering patterns. Note that in this project we were unable to link data to
any AD information, thus could not distinguish data corresponding to wandering episodes from
those that are anomalies simply not following patterns (i.e., individuals with AD accompanying
family members). Therefore, we focus on purely data-driven approach to detecting and
predicting unusual locations. To do so, the data Dy/,,,,, are filtered to remove all points belonging
to normal locations Ci..Ck as well as points in between (i.e., driving or walking between Cj..Cx).
The resulting dataset Danom represents anomalies in the data, some of which may be indicative
of wandering events.
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Figure 10: All data (left); normal locations and points in between (middle); filtered data (right).

AUC (% of devices) AuUC <= 0.60 (56%) 0.60 < AUC <= 0.75 (25%) AUC > 0.75 (19%) Total
Mean sD Mean sD Mean sD Mean sD
Accuracy 0.87 0.16 0.87 0.15 0.89 0.08 0.90 0.14
Number of days 73.98 72.02 145.39 150.32 104.96 107.53 99.63 125.21
Number of data points 4234.47 5776.22 10317.94 9030.3 7080.26 10205.8 5667.56 7542.08
Number of unusual points 50.97 70.75 136.98 163.32 98.36 171.52 81.49 127.58

Table 4: Prediction of unusual movements statistics.

Supervised learning methods, can be then applied to identify if there are patterns in frequency
of wandering and general area in which individuals with AD go. Specifically, we applied
classification and as expected for most of the devices (56%) AUC is less than 0.60 which is
indicative of unpredictable movements. Anomalies are depicted in Figure 10. Statistics of the
classification are also shown in table 4.



4. Conclusion

The majority of people with AD are in danger of wandering including getting lost. Subsequently,
these individuals may get hurt, cause extreme distress for family and caregivers, and require
costly search efforts. The presented research aimed at finding patterns of movement that can
eventually lead to prediction of wandering. The work represents first step in a long-term project.
The method is based on spatiotemporal clustering used to detect normal locations where
individuals typically are. Then clusters are passed to a machine learning algorithm to construct
models for predicting typical locations of GPS tracker wearers. The method achieved the best
AUC (and accuracy) of 76% in predicting locations just based on date and time. This high accuracy
indicates highly regular lifestyle of most of individuals whose data were analyzed. This is an
encouraging result, because it potentially allows for analyzing non-standard patterns of
movement that may correspond to wandering and getting lost. Detection of unusual movements
gave the initial AUC of 0.60 that is indicative of irregular movements outside of typical locations.

One important limitation of the presented work is that data are not limited to AD patients, and
in fact there is no information about the device wearers at all. Currently the work is being
extended by directed data collection from GPS trackers linked to clinical and socioeconomic
information. Individuals with confirmed stage 3-6 Alzheimer’s disease will be tracked for 2-3
years to collect sufficient data for prediction of wandering, and possibly linking wandering to
progression of AD. On methodological side, the movement patterns are being linked to landmark
data extracted from Open Street Maps. This will allow for detection of patterns related not only
to coordinates and their relationships, but more importantly to what is located at a given
location. The work is also extended with the possibility of predicting movement based on the last
known location.
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